Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex.

نویسندگان

  • Yu Kato
  • Hiroshi Kawasaki
  • Yoshifumi Ohyama
  • Takashi Morishita
  • Hiroshi Iwasaki
  • Tetsuro Kokubo
  • Hisashi Hirano
چکیده

In diploid Saccharomyces cerevisiae cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles, respectively. Their localizations depend on the multigenerational proteins Rax1p/Rax2p. Many genes involved in bud-site selection were identified previously by genome-wide screening of deletion mutants, which identified BUD32 that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS (endopeptidase-like, kinase, chromatin-associated/kinase, putative endopeptidase, and other proteins of small size) complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud-site selection. BUD9 is necessary for random budding in each deletion mutant of EKC/KEOPS components, and RAX2 is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7

The KEOPS/EKC complex is a tRNA modification complex involved in the biosynthesis of N6-threonylcarbamoyladenosine (t6A), a universally conserved tRNA modification found on ANN-codon recognizing tRNAs. In archaea and eukaryotes, KEOPS is composed of OSGEP/Kae1, PRPK/Bud32, TPRKB/Cgi121 and LAGE3/Pcc1. In fungi, KEOPS contains an additional subunit, Gon7, whose orthologs outside of fungi, if exi...

متن کامل

The role of cell cycle–regulated expression in the localization of spatial landmark proteins in yeast

In Saccharomyces cerevisiae, Bud8p and Bud9p are homologous plasma membrane glycoproteins that appear to mark the distal and proximal cell poles, respectively, as potential sites for budding in the bipolar pattern. Here we provide evidence that Bud8p is delivered to the presumptive bud site (and thence to the distal pole of the bud) just before bud emergence, and that Bud9p is delivered to the ...

متن کامل

Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor

In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...

متن کامل

Isolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae

In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 188 4  شماره 

صفحات  -

تاریخ انتشار 2011